AREA OF ACCREDITATION # Limited Liability Company ### Research and Production Enterprise "ELEMER" #### (LLC NPP "ELEMER") name of a legal entity or surname, name and patronymic (if any) of an individual entrepreneur 124489, Russia, Moscow, Zelenograd, passage 4807, building 2 124489, Russia, Moscow, Zelenograd, passage 4807, house 7, building 1 address of the place of business ## Compliance GOST ISO / IEC 17025-2019 "GENERAL REQUIREMENTS FOR THE COMPETENCE OF CALIBRATION AND TESTING LABORATORIES" Calibration of measuring instruments #### ДДЯ conditional cipher of the calibration sign | No. | Measurements | Measured
value | Calibration
object | Range
measurements | Extra
options | Expanded measurement uncertainty <*> | Calibration
method /
Procedure
<**> | Note | |-----|---|--------------------|--|--|------------------|--------------------------------------|--|------| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | | | Installations for verification of volume consumption and liquid volume | from 0.01 to 600 m ³ /h
from 0.004 to 5 m ³ | | U _{0.95} = 0.04 % | Direct comparison method using a liquid flow rate standard. Comparison | | | | Measurement | | Installations for
verification of mass
consumption and
mass of liquid | from 0.01 to 600 t/h
from 0.004 to 5 t | | | method using a comparison standard | | | 1 | of parameters of flow, consumption, level, volume | Liquid consumption | Liquid pipe-piston calibration | from 0.01 to 600 m ³ /h | | U _{0.95} = 0.04 % | Direct comparison method using a | | | | of substances | | installations, | from 0.01 to 600 t/h | | | liquid flow rate | | | | | | compact-provers, with metal measuring | from 0.004 to 5 m ³ | | | standard.
Comparison | | | | | | gauges, dynamic measuring gauges, | from 0.004 to 5 t | | | method using a comparison | | | | | | with towers | | | | standard using a liquid flow rate | | | | | | | | | | standard. Direct | | | | | | | | | | comparison | | | | | | | | | | method using | | | | | | | | | | liquid volume
standard | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |---|---|--------------------|---|--|---|--|---|---| | | | | Flow transducers,
flowmeters, counters,
volumetric
flowmeters-liquid
meters | from 0.01 to 600 m ³ /h | | U _{0.95} = 0.03 % | Direct comparison
method using a
liquid volumetric
flow rate standard | | | | Measurement | Liquid consumption | Flow transducers,
flowmeters, counters,
volumetric probe
flowmeters-liquid
counters | from 0.1 to
45000 m ³ /h | | U _{0.95} = 0.1 % | Method of direct
comparison using
the standard of
liquid volume
flow. Method of
indirect
measurements | | | 2 | of parameters
of flow,
consumption,
level, volume
of substances | | Flow transducers, flow meters, counters, liquid mass flow meters | from 0.01 to 600 t/h from 0.01 to | | U _{0.95} = 0.03 % U _{0.95} = 0.04 % | Direct comparison
method using a
liquid flow rate
standard | | | | | | Liquid rotameters Flowmeters and | 200 m ³ /h from 0.01 to | | U _{0.95} = 0.04 %
U _{0.95} = 0.03 % | | | | | | | liquid flow
transducers of
variable differential
pressure | 600 m ³ /h | | | | | | | | Gas
consumption | Flow transducers,
flow meters, meters,
gas flow meters | from 0.5 to
12000 m ³ /h | | U _{0.95} = 0.2 % | Direct comparison
method using a gas
flow standard | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |---|---|--------------------|--|---|---|------------------------------|--|---| | | | | Flow transducers,
flow meters,
counters, probe gas
flow meters | from 0.5 to
250000 m ³ /h | | U _{0.95} = 0.1 % | Direct comparison method using a gas flow standard Method of direct comparison using the working standard of the unit of length | | | | Measurement | Gas
consumption | Gas Rotameters | from 0.5 to 3000 m ³ /h | | U _{0.95} = 0.2 % | method using a gas | | | 3 | of parameters
of flow,
consumption,
level, volume
of substances | | Flow meters and gas flow transducers with variable differential pressure | from 0.5 to
12000 m ³ /h | | U _{0.95} = 0.2 % | | | | | | Level | Level gauges and level transducers | from 0 to 20 m | | $U_{0.95} = 0.82 \text{ mm}$ | comparison using the working standard of the unit | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |---|--|----------------------|---|--|---|--|--|---| | | | Overpressure, vacuum | Digital pressure gauges, pressure transducers, vacuum meters, manovacuummeters, pressure calibrators Digital pressure | $\pm (0.04 - 0.08) \text{ kPa}$ $\pm (0.08 - 0.16) \text{ kPa}$ $\pm (0.16 - 0.4) \text{ kPa}$ | | U _{0.95} = (0.005
0.015) %
U _{0.95} = (0.005 | | | | | | | gauges, pressure
transducers, vacuum
meters,
manovacuummeters,
pressure calibrators | from minus 100 to
minus 0.4 kPa
from 0.0004 to
100 MPa | | 0.015) % | | | | 4 | Pressure measurements, vacuum measurements | Overpressure, | Reference pressure
transducers,
electronic pressure
gauges, indicating
pressure gauges,
deformation pressure
gauges | from minus 100 to 0 kPa
from 0.0025 to 100 MPa | | U _{0.95} = (0.005
0.015) % | Direct comparison
method using a
pressure unit
standard | | | | | vacuum | Reference pressure
transducers with
digital output signal,
measuring pressure
transducers,
electronic pressure
gauges, calibrators,
pressure controllers,
pressure sensors,
pressure setters | from 0.003 to 100 MPa | | U _{0.95} = (0.005
0.015) % | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |---|------------------------|-------------------|--|--------------------------|---|--|--|---| | | | | Pressure transducers,
electronic pressure
gauges, calibrators,
pressure controllers,
vacuum meters | from 0.133
to 400 kPa | | U _{0.95} = (0.005
0.015) % | Direct comparison
method using a
pressure unit
standard | | | 5 | Pressure measurements, | Absolute pressure | Reference pressure
transducers with
digital output signal,
measuring pressure
transducers,
electronic pressure
gauges, calibrators,
pressure controllers,
pressure sensors,
pressure setters | from 0 to
16.0 MPa | | U _{0.95} = 0.005 % | pressure unit | | | | vacuum measurements | Overpressure | Reference pressure transducers with digital output signal, analog measuring pressure transducers, electronic pressure gauges, calibrators, pressure controllers, pressure sensors, pressure setters, deformation pressure gauges | from 0.003
to 100 MPa | | U _{0.95} = (0.005
0.015) % | method using a pressure unit | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |---|---|--------------|--|---|---|--|---|---| | | | Overpressure | | from minus 100
to 0 kPa
from 0 to 100 MPa | | U _{0.95} = (0.005
0.015) % | Direct comparison
method using a
pressure unit
standard | | | | | | | from minus 210
to 2500 °C | | U _{0.95} = (0.005
0.5) °C | Method of indirect
measurements
using current and
voltage calibrator | | | | | | Pressure calibrators,
test pressure and
standard signal
complexes | from 0 to 25 mA | | U _{0.95} = 0.004 mA | Direct
measurement
method using a DC
current calibrator | | | | | | complexes | from minus 10
to 100 mV | | $U_{0.95} = 3 \mu V$ | Direct
measurement
method using a DC
voltage calibrator | | | | | | | from 0 to 320 Ohm | | $U_{0.95} = 2.10^{-3} \text{ Ohm}$ | Method of indirect
measurements
using current and
voltage calibrator | | | | | | Cargo piston pressure gauges | from 0.01
to 60.0 MPa | | U _{0.95} = (0.005
0.015) % | Direct comparison
method using a
pressure unit
standard | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |---|---|--------------------------------------|--|---|---|------------------------------|---|---| | 6 | Thermophysical and temperature measurements | Temperature | Sensitive platinum and copper elements, resistance thermal transducers made of platinum and copper, sets of platinum resistance thermometers | from minus 200 to 660 °C from 0 to 180 °C $\Delta t_{min} = 2$ °C | | U _{0.95} = 0.02 °C | Method of direct
measurements
using working
temperature
standards | | | | | | Thermoelectric transducers | from minus 200
to 1800 °C | | U _{0.95} = 0.3 °C | Method of direct
measurements
using working
temperature
standards | | | 7 | Thermophysical and temperature measurements | Temperature, direct electric current | Universal thermal
transducers, thermal
transducers with
unified output signal | from minus 200
to 1800 °C | | U _{0.95} = 0.05 °C | Direct
measurement
method using a
working
temperature
standard | | | | | | | from 0 to 20 mA | | U _{0.95} = 0.004 mA | Direct
measurement
method using a DC
current calibrator | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |---|---|--------------------------------------|--|---|---|--|---|---| | 8 | Measurements
of the physico-
chemical
composition
and properties
of substances | Humidity of gases | Temperature and humidity measuring transducers | from 0 to 100 % from 0 to 18 g/m³ from 0 to 25000·100/P ppm⁻¹ from minus 40 to 80 °C dew point from minus 40 to 110 °C | | $U_{0.95} = 0.7 \%$ $U_{0.95} = (0.5 3) ^{\circ}C$ $U_{0.95} = (0.05 0.1) ^{\circ}C$ | Method of direct
measurements
using the standard
unit of gas
humidity | | | | | Temperature | Resistance
thermometers platinum
reference, resistance
thermometers platinum
vibration resistant | from 0 to 660.323 °C from minus 200 to 0 °C | | U _{0.95} = (0.003
0.004) °C
U _{0.95} = 0.01 °C | Direct
measurement
method using a
working
temperature
standard | | | | | | | from minus 200
to 2500 °C | | $U_{0.95} = (0.05 \dots 2) ^{\circ}\text{C}$ | Method of direct
measurements using
a direct electric | | | 9 | Thermophysical and temperature measurements | | | from minus 500
to 500 mV | | | current calibrator. Method of direct measurements using a direct electric | | | | | Temperature, DC current, DC voltage, | Measuring and computing complexes based on "ELEMER- | from minus 20
to 20 V | | $U_{0.95} = 3 \mu V$ | voltage calibrator.
Indirect
measurement | | | | | DC resistance | EL – 4000" modules | from minus 20
to 20 mA | | U _{0.95} = 0.004 mA | method using a current and voltage calibrator | | | | | | | from 0 to 5 mA | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |---|---|--|--|---|---|---|---|---| | | | Temperature, DC current, DC voltage, DC resistance | Meters-technological regulators, multi-channel technological recorders, power supplies and signal conversions, measuring converters, digital technological meters, calculators | from minus 210 to 2500 °C from 0 to 10 V from minus 10 to 600 mV from 0 to 20 mA from 0 to 20 kHz from 0 to 320 Ohm from 0 to 3000 Ohm from 0.1 to 10 kOhm | | $U_{0.95} = (0.03 5) °C$ $U_{0.95} = 1.5 mV$ $U_{0.95} = 3 \mu V$ $U_{0.95} = 0.004 mA$ $U_{0.95} = (5 \cdot 10^{-12} \cdot F + 1 \cdot 10^{-6}) Hz$ $U_{0.95} = 2 \cdot 10^{-3} Ohm$ $U_{0.95} = 0.001 Ohm$ $U_{0.95} = \pm 0.01 \%$ | Method of direct measurements using a direct electric current calibrator. Method of direct measurements using a direct electric voltage calibrator. Method of indirect measurements using a current and voltage calibrator. Method of direct measurements using a frequency meter | | | | | Temperature | Equipment for the implementation of reference points, temperature measurements Temperature calibrators | from minus 38.8344
to 660.323 °C
from minus 50
to 1100 °C | | U _{0.95} = (0.0002
0.01) ° C
U _{0.95} = (0.01
2.0) °C | Method of direct measurements using a working temperature standard, GOST R 8.814-13 Direct measurement method using a working temperature standard | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |----|---|--|---|---|---|--|---|---| | 10 | Thermophysical and temperature measurements | Temperature, DC current, DC voltage, DC resistance | Calibrators- measuring unified signals, modules for measuring resistance, voltage and DC current as part of temperature calibrators Digital small-sized thermometers, digital reference thermometers, multichannel thermometers, electrocontact thermometers | from minus 210 to 2500 °C from 0 to 25 mA from minus 100 to 100 mV from 0 to 12 V from 0 to 120 V from 0 to 320 Ohm from 0 to 320 Ohm from 0 to 3000 Ohm from minus 200 to 2500 °C from 0 to 100 Ohm from 0 to 375 Ohm from minus 10 to 100 mV | | $U_{0.95} = (0.005 0.5) ° C$ $U_{0.95} = 0.004 mA$ $U_{0.95} = 3 μV$ $U_{0.95} = 1.5 μV$ $U_{0.95} = 1.5 ·10 ·4 Ohm$ $U_{0.95} = 2 ·10 ·3 Ohm$ $U_{0.95} = 2 ·10 ·3 Ohm$ $U_{0.95} = 0.001 Ohm$ $U_{0.95} = (0.005 2) ° C$ $U_{0.95} = 2 ·10 ·3 Ohm$ $U_{0.95} = 0.004 mA$ $U_{0.95} = 3 μV$ | Direct measurement method using a DC current calibrator. Direct measurement method using a DC voltage calibrator. Indirect measurement method using a current and voltage calibrator. | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |---|---|---|--|------------------------------|---|--|---|---| | | | | | from minus 270
to 2500 °C | | U _{0.95} = (0.002 2) °C | | | | | | | | from 0 to 30 mA | | U _{0.95} = 0.004 mA | | | | | | | | from minus 300
to 300 mV | | $U_{0.95} = 3 \mu V$ | Direct
measurement
method using a DC
current calibrator. | | | | | | Verification systems for thermal converters, automated | from 0 to 30 Ohm | | $U_{0.95} = 1.5 \cdot 10^{-4} \text{ Ohm}$ | Direct
measurement
method using a DC | | | | | | multichannel
verification systems | from 0 to 12 V | | U _{0.95} = 1.5 mV | Indirect measurement | | | | | | | from 0 to 320 Ohm | | $U_{0.95} = 2.10^{-3} \text{ Ohm}$ | method using a current and voltage calibrator. | | | | | | | from 0 to 1500 Ohm | | | | | | | | | | | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |----|---------------------------------|-----------------------------------|---|---|---|--|--|---| | | | | Electronic counting frequency meters | from 100 μHz to 5 MHz | | $U_{0.95} = (5 \cdot 10^{-12} \cdot F + 1 \cdot 10^{-6}) \text{ Hz}$ | Method of direct
measurements
using a frequency
meter | | | 11 | Time and frequency measurements | Frequency,
number of
pulses | Channels of devices
and measuring
systems with
frequency input
(output) | generation
from 1 to 10 ⁸ Hz,
from 1 to 4.29·10 ⁹
pulses. | | $U_{0.95} = (3 \cdot 10^{-6} \cdot f) Hz$ ±1 unit accounts | Method of direct
measurements
using a generator | | | | | | (output) | measurement from 10 ⁻⁴ to 5·10 ⁶ Hz, from 1 to 4.29·10 ⁹ pulses. | | | Method of direct
measurements
using a frequency
meter | | | General Director of LLC NPP "ELEMER" | V. M. Okladnikov | |--------------------------------------|------------------| |--------------------------------------|------------------| <*> A footnote to the scope of accreditation indicates the expanded measurement uncertainty, which is part of the calibration measurement capabilities of the laboratory and represents the smallest expanded uncertainty achievable for the best available calibration object (type (group) of measuring instruments). The coverage probability corresponds to approximately 95 %, and the coverage factor k = 2, unless otherwise indicated in the note. Uncertainty values without units of quantities are relative to the measured value of the quantity, unless otherwise indicated in a note. <**> A verbal description of the calibration method is given, including an indication of the equipment used, and (or) the details of the document establishing the calibration method (methodology) are indicated.